Section 5.6

Derivatives of Inverse Trigonometric Functions: Let *u* be a differentiable function of *x*.

$$\frac{d}{dx}[\arcsin u] = \frac{u'}{\sqrt{1 - u^2}} \qquad \qquad \frac{d}{dx}[\arccos u] = \frac{-u'}{\sqrt{1 - u^2}}$$
$$\frac{d}{dx}[\arctan u] = \frac{u'}{1 + u^2} \qquad \qquad \frac{d}{dx}[\operatorname{arccot} u] = \frac{-u'}{1 + u^2}$$
$$\frac{d}{dx}[\operatorname{arccsc} u] = \frac{u'}{|u|\sqrt{u^2 - 1}} \qquad \qquad \frac{d}{dx}[\operatorname{arccsc} u] = \frac{-u'}{|u|\sqrt{u^2 - 1}}$$

- 1) Find the following:
 - a) $\arcsin\left(\frac{\sqrt{3}}{2}\right)$

b) arcsec 2

- c) $\operatorname{arccot}(-1)$
- d) $\operatorname{arccos}\left(-\frac{1}{2}\right)$
- 2) Solve $\operatorname{arcsec}(4x 1) = \frac{\pi}{3}$.

3) Given $y = \arctan x$, find $\csc y$.

4) Given $y = \arccos\left(\frac{\sqrt{13}}{2}\right)$, find $\cot y$.

- 5) Find the derivatives of the following functions.
 - a) $y = \arccos(3x)$

b) $y = \arccos x^2$

c) $y = \arccos 2^{3x}$

6) Find and simplify $\frac{d}{dx} \left[\sqrt{x^2 - 1} - \operatorname{arcsec} x \right]$. Use your answer to find $\int \frac{\sqrt{x^2 - 1}}{x} dx$.