Section 5.6

Derivatives of Inverse Trigonometric Functions: Let u be a differentiable function of x.

$$
\begin{aligned}
\frac{d}{d x}[\arcsin u] & =\frac{u^{\prime}}{\sqrt{1-u^{2}}} & \frac{d}{d x}[\arccos u] & =\frac{-u^{\prime}}{\sqrt{1-u^{2}}} \\
\frac{d}{d x}[\arctan u] & =\frac{u^{\prime}}{1+u^{2}} & \frac{d}{d x}[\operatorname{arccot} u] & =\frac{-u^{\prime}}{1+u^{2}} \\
\frac{d}{d x}[\operatorname{arcsec} u] & =\frac{u^{\prime}}{|u| \sqrt{u^{2}-1}} & \frac{d}{d x}[\operatorname{arccsc} u] & =\frac{-u^{\prime}}{|u| \sqrt{u^{2}-1}}
\end{aligned}
$$

1) Find the following:
a) $\arcsin \left(\frac{\sqrt{3}}{2}\right)$
b) $\operatorname{arcsec} 2$
c) $\operatorname{arccot}(-1)$
d) $\arccos \left(-\frac{1}{2}\right)$
2) Solve $\operatorname{arcsec}(4 x-1)=\frac{\pi}{3}$.
3) Given $y=\arctan x$, find $\csc y$.
4) Given $y=\operatorname{arccsc}\left(\frac{\sqrt{13}}{2}\right)$, find $\cot y$.
5) Find the derivatives of the following functions.
a) $y=\arccos (3 x)$
b) $y=\operatorname{arccsc} x^{2}$
c) $y=\operatorname{arccot} 2^{3 x}$
6) Find and simplify $\frac{d}{d x}\left[\sqrt{x^{2}-1}-\operatorname{arcsec} x\right]$. Use your answer to find $\int \frac{\sqrt{x^{2}-1}}{x} d x$.
